
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 9: Main Memory

9.2

Ch.1: How a Modern Computer Works
A von Neumann architecture and a depiction of the interplay of
all components of a computer system:

9.3

Q: Where can be the system bottleneck?

 CPU?
 Memory access?
 Disk access?
 External input (User input, network connection, etc.)?

 Depends on the application
 Q: For each system component above, describe an

application/program that would create a bottleneck

9.4

Ch.1: Storage-device hierarchy

9.5

Ch.1: Performance of Various Levels of Storage

Movement between levels of storage hierarchy can be explicit or implicit

9.6

Duties of a Memory Management System

 Define an address representation that can be translated between CPU,
memory, and program (the code)

 Memory access protection
 Efficient handling of memory

 Efficient algorithms to choose the best memory portion(s) for a given
demand

 Reduce unused part of memory
 Decide which process to add or remove from memory
 …

9.7

Background

 Program must be brought (from disk) into memory and placed within a
process for it to be run

 Memory unit only sees a stream of:
 addresses + read requests, or
 address + data and write requests

 Memory unit does not know how these addresses were generated
 Address representation (used by CPU, memory, and processes)

should be defined clearly
 Access to the main memory can take many cycles, causing a CPU stall

 Register access is done in one CPU clock
 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

9.8

Memory Protection

 Q: Protect which part of memory from whom?
 Need to ensure that a user process can only access to its address

(memory) space
 We can provide this protection by using a pair of base and limit

registers that define the logical address space of a process
 OS has access to:

 these two registers
 user process memory

 Q: Why?
 and, of course, OS memory

9.9

Hardware Address Protection

 CPU must check every memory access generated in user mode to be
sure it is between base and limit for that user

 the instructions to loading the base and limit registers are privileged

9.10

Address Binding

 Programs on disk, ready to be brought into memory to execute form an input
queue

 Addresses represented in different ways at different stages of a program’s life
 An example:

 Source code addresses are usually symbolic
 e.g., variables: “int i”, “int *j”

 Compiler binds them to relocatable addresses
 e.g. “14 bytes from beginning of this module”

 Linker or loader will bind relocatable addresses to absolute addresses
 e.g. 74014

 Each binding maps one address space to another

9.11

Address Binding Options

 Binding of instructions and data to absolute memory addresses can
happen at different stages:
 Compile time: If memory location known a priori, absolute

code can be generated
 must recompile the code if the starting location changes
 MS-DOS was using this method for .COM executables

– loaded at a pre-set address: at offset 0100h
 Load time: if memory location is not known at compile time,

compiler must generate relocatable code, the absolute address
can be generated at load time
 If initial address changes, load again

 Execution time: Binding delayed until run time if the process
can be moved during its execution from one memory segment to
another
 Need hardware support for address maps (e.g., base and

limit registers)
 Q: Why would one need Execution Time binding?

9.12

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a separate
physical address space is central to proper memory management
 Logical address – used by the CPU; also referred to as virtual

address
 Physical address –used by the memory

 Logical and physical addresses are the same in compile-time and load-
time address-binding schemes. Q: Why?

 Logical (virtual) and physical addresses differ in execution-time address-
binding scheme

 Logical address space is the set of all logical addresses used by a
program

 Physical address space is the set of all physical addresses used by a
program

9.13

Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical address

 The user program deals with logical addresses; it never sees the real
physical addresses
 Execution-time binding occurs when reference is made to location in

memory
 Many methods possible, covered in the rest of this chapter

9.14

Memory-Management Unit (Simple Sol’n)

 Consider simple scheme, which is a generalization of the base-register
scheme

 The base register now called relocation register
 The value in the relocation register is added to every address generated

by a user process at the time it is sent to memory

9.15

Contiguous Allocation

 Main memory must support both OS and user processes
 Limited resource, must allocate efficiently
 Contiguous allocation is one early method
 Main memory usually into two partitions:

 Resident operating system, usually held in low memory
 User processes then held in high memory
 Each process contained in single contiguous section of memory

9.16

Contiguous Allocation (Cont.)

 Relocation registers enable protecting the user processes from each
other, and from changing operating-system code and data
 Relocation register contains the smallest _______ address
 Limit register contains the upper limit of _______ addresses
 At context switch, the dispatcher loads the relocation and limit

registers with the correct values
 Allows actions such as kernel code being transient and kernel

changing size
 e.g., by removing from the memory the code and data related to

a device or service that is not being used

9.17

Hardware Support for Relocation and Limit Registers

9.18

Memory Partitioning
 Simple approach: Fixed size partitions

 Q: Disadvantages?
 Degree of multiprogramming limited by number of partitions
 Inefficient use of space

 Modern alternative:
 Variable-partition sizes for efficiency (sized to a given process’ needs)

 When a process arrives, it is allocated memory from a hole large enough to
accommodate it

 Process exiting frees its partition, adjacent free partitions combined
 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

9.19

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough
 Best-fit: Allocate the smallest hole that is big enough;

must search entire list, unless ordered by size
 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search
entire list
 Produces the largest leftover hole

 Quick-fit: Keep a list of holes grouped by sizes, e.g., 4K,
8K, etc.
 Fast allocation
 Size changes (e.g. merging) are costly to manage

Q. How to satisfy a request of size n from a list of free holes?

Statistically, first-fit and best-fit is better than worst-fit in terms of
storage utilization

9.20

Fragmentation

 External Fragmentation
 total memory space exists to satisfy a request, but it is not

contiguous

 Internal Fragmentation
 allocated memory may be slightly larger than requested memory;

 e.g., process requires 18462 bytes, but we have a hole of 18464
bytes

 management of the small (e.g. 2 bytes) holes is more costly than
using them

 so, give the whole space to the process

 First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost
to fragmentation
 1/3 may be unusable -> 50-percent rule

